Math Earth Day – 22 de abril, Día de la Tierra

Seguir leyendo…

Advertisements

Matemáticas en una imagen… Funciones cuadráticas

Seguir leyendo…

Cuando te das cuenta de que la calculadora estaba en radianes…

Seguir leyendo…

¿Qué bicicleta regalarías a una matemática o un matemático? ¡La Pi Bike!

Imagina que tienes que regalar una bicicleta a algún matemático o matemática que conoces. Hay muchos modelos de bicicletas para regalar ¿verdad?

Pero…

¿Te imaginas una con forma de número pi (π)?

Pi Bike de Martijn Koomen y Tadas Maksimovas (fuente)

La Pi Bike es una bicicleta de piñón fijo hecha a mano con fibra de carbono en forma de símbolo del número pi (π).

Martijn Koomen y Tadas Maksimovas crearon el diseño inspirándose en un dibujo del ilustrador malayo Tang Yau Hoong e hicieron una bicicleta completamente funcional.

Seguir leyendo…

Como dibujar de forma sencilla una ilusión óptica de una escalera en 3D

A todos nos gustan las ilusiones ópticas. Sin duda son fascinantes ya que son una especie de magia de la geometría con la ayuda, eso sí, de nuestro cerebro.

La que os quiero mostrar a continuación es obra de Jonathan Harris, y me parece fascinante por su sencillez, lo que hace que sea aún más atractiva ya que podemos hacerla cualquiera de nosotros y, por supuesto, en un aula.

No quiero estropearla desvelándola, así que simplemente os diré que no se hace mucho más que doblar un papel por la mitad y dibujar unas líneas.

Espero que os guste tanto como a mí.

Seguir leyendo…

La brillante matemática Sophie Germain nació un 1 de abril

Seguir leyendo…

René Descartes, el padre de la Geometría Analítica, nació un 31 de Marzo

Seguir leyendo…

Función cuadrática (parábola). Parte II: Forma desarrollada o polinómica

En una entrada anterior del blog hablé sobre la función cuadrática y, partiendo de su expresión más sencilla, y = x2, fui haciéndole transformaciones hasta llegar a la forma canónica de la función cuadrática general, de la que como conté se podía extraer directamente bastante información de su representación gráfica, es decir, de su parábola asociada:

Si quieres ver la entrada completa éste es el enlace:

Función cuadrática (parábola). Parte I: Forma canónica

Aquella entrada la terminaba diciendo que me habían faltado más cosas por contar, y entre ellas estaba relacionar todo lo que se había visto con la expresión general de la ecuación cuadrática.

Pues eso es lo que voy a hacer en esta entrada.

La expresión general o forma desarrollada o polinómica de una función cuadrática es la siguiente:

Ahora podría contaros directamente cómo se obtiene el vértice de la parábola a partir de los coeficientes de esta expresión, pero creo que no estaría aportando nada a lo que ya podéis ver en tantos sitios y prefiero que lo deduzcamos juntos.

Lo mejor es partir de la forma canónica (de la que ya sabemos bastantes cosas), desarrollarla y comparar lo que nos salga con esta expresión que acabamos de ver para sacar nuestras propias conclusiones.

Seguir leyendo…

Cuadros docentes. Para mañana hacéis…

Para mañana hacéis el 1, 2 y 4 de esta página.

-¿Y el 3?

– No, el 3 no.

– ¿Solo hay que hacer el 3?
– ¿El 3 de qué página?

– Que no, que el 3 no hay que hacerlo.

-¿Y hay que copiar los enunciados de los cuatro?
-¿Los otros los hacemos o solo el 3?
– ¡Qué no, que ha dicho que solo el 3!

– Repito: el 1, el 2 y el 4.

Al día siguiente…

– Es que yo solo he hecho el 3.

 

“Agonía de la creación”, de Leonid Pasternak.

 

Seguir leyendo…

¿Sabías que…? Un número primo con 6399 nueves y 1 ocho

Seguir leyendo…

Puntos y rectas notables del triángulo

Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo.

Además, dos lados contiguos forman uno de los ángulos interiores del triángulo que, como su propio nombre indica, tiene tres. Y, como es bien sabido, la suma de éstos es 180º.

Pues bien, sobre los triángulos hay todo un universo matemático de características, propiedades, teoremas y curiosidades. Pero no seré tan ambicioso en esta entrada (resultaría eterna) y me centraré en hablar de un grupo de rectas y puntos muy importantes, solo los más conocidos ya que hay muchos más, que se conocen como puntos y rectas notables del triángulo.

Entre las rectas notables más conocidas de un triángulo veremos las mediatrices, las medianas, las alturas y las bisectrices; Y, sobre sus puntos notables asociados: el circuncentro, el baricentro, el ortocentro y el incentro y exincentros, respectivamente.

Seguir leyendo…

Indeterminación

Seguir leyendo…

Forges y sus viñetas matemáticas

Antonio Fraguas de Pablo, más conocido como Forges, nos ha dejado en la madrugada del día de hoy a la edad de 76 años.

Sin duda alguna Forges ha sido el humorista gráfico que mejor ha retratado el último medio siglo de la historia de España.

Su padre no puso objeciones a su vocación, y solo le pidió que que se reconocieran sus dibujos “a quince metros”… y está claro que lo consiguió.

Sirva como pequeño homenaje esta recopilación con algunas de sus viñetas con referencias al mundo de las matemáticas.

 

Seguir leyendo…

Gráfico del corte de pelo de moda

Seguir leyendo…

Este mes de Febrero de 2018 tiene exactamente 8! minutos

Seguir leyendo…

Acertijo: ¿Cuál es el siguiente número?

Seguir leyendo…

Math Reyes Magos

Seguir leyendo…

¡Récord de mayor número primo conocido! Primo de Mersenne número 50

Empezamos el año con nuevo récord de mayor número primo conocido.

Ayer, 3 de enero de 2018, el GIMPS (Great Internet Mersenne Prime Search) anunció el descubrimiento y confirmación del primo de Mersenne número 50, que se convierte en el mayor número primo conocido hasta el momento.

El nuevo número primo, conocido como M77232917, es:

M77232917 = 277232917 – 1

y tiene nada más y nada menos que 23.249.425 dígitos (más de 23 millones), casi un millón de dígitos más (910.807) que el anterior récord que se estableció en enero de 2016 (el primo de Mersenne número 49).

 

Cuando hablamos de números lo de “ser grande” es muy relativo, pero para que nos hagamos una idea de cómo es este número, si suponemos que una persona puede leer unos 120 dígitos por minuto, necesitaría aproximadamente cuatro meses y medio para leerlo (sin descansar).

Si queréis hacer la prueba (incluso descansando como todo mortal) podéis descargarlo aquí (se trata de un fichero de extensión txt comprimido en zip).

Por cierto, nuestro primo conocido mayor (por el momento) termina en:

…79071

Hubiese sido mal asunto que terminase en un número par, porque como ya sabéis el único número primo par es el 2, y los demás son impares.

 Y dicho esto, más de uno se habrá preguntado:

¿Qué es eso de los números de Mersenne? ¿Y, quién es Mersenne?

Seguir leyendo…

Lo más visto de matematicascercanas en 2017

Terminado 2017 como es tradición ya en el blog, toca hacer balance del año y recopilar las entradas más visitadas durante este 2017.

Dentro de unos días el blog cumplirá cuatro años. En su primer año (2014) tuvo 92.719 visitas, en 2015 el número de visitas fue de 521.432, en su tercer año de vida (2016) recibió 967.387 visitas, y en este año que ha terminado (2017) ha tenido 1.924.756 visitas, más que en los tres años anteriores juntos, sumando un total de 3.506.294 desde que se creó. Y todo esto es gracias a vosotras y vosotros.

El hecho de llegar a más gente ha sido en buena parte gracias al crecimiento del número de seguidores de la página de Facebook del blog, que ha pasado de 51.058 al empezar el año a 79.644. Aunque tengo que decir que parece que se ha estancado y apenas ha crecido en la parte final del año. Así que, si no la seguís aún os invito a que lo hagáis y, lo que ayudaría aún más a llegar a más gente con las matemáticas, a que invitéis a vuestros contactos a que lo hagan.

También ha crecido la página de Twitter del blog, que ahora tiene 5.500 seguidores. Sí, sé que no es mucho en Twitter, está a años luz de la cuenta de Cristiano Ronaldo (con más de 67 millones) o la de “el rubius” (más de 10 millones)… pero consigue acercar las matemáticas a más personas.

A eso hay que sumar la contribución de la cuenta de Pinterest del blog (con 450 seguidores), y de la más joven de todas las cuentas de matematicascercanas, estrenada este año: la cuenta de Instagram, con 755 seguidores.

Quizás todo esto no sea mucho, pero teniendo en cuenta que lo llevo yo solo y el poco tiempo que me queda entre mi trabajo de Profesor de Matemáticas, mi familia (con mis dos hijas que ocupan buena parte de mi día), la casa y tantas ocupaciones, es más de lo que podía imaginar cuando empecé el blog.

 Pero no quiero aburriros con tanto número y con mi vida, y paso a lo que seguro que os interesa más, que es lo que da título a esta entrada: Lo más visto de matematicascercanas en 2017.

Han sido 69 las entradas publicadas en este año, y ya van 380 entradas, así que muchas se quedan fuera de este listado y algunas, que aún tienen poco tiempo de vida, seguro que serán a la larga más vistas que bastantes de las que aparecen ahora.

Las 20 entradas del blog más visitadas en este año 2017 que ha terminado han sido (podéis acceder a cada una de ellas pinchando en su título o en la imagen): 

Seguir leyendo…

A %d blogueros les gusta esto: